Barretenberg
The ZK-SNARK library at the core of Aztec
Loading...
Searching...
No Matches
bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup > Class Template Reference

#include <biggroup.hpp>

Classes

struct  batch_lookup_table_base
 
struct  batch_lookup_table_plookup
 
struct  chain_add_accumulator
 
struct  eight_bit_fixed_base_table
 
struct  four_bit_table_plookup
 
struct  lookup_table_base
 
struct  lookup_table_plookup
 
struct  secp256k1_wnaf
 
struct  secp256k1_wnaf_pair
 

Public Types

using Builder = Builder_
 
using bool_ct = stdlib::bool_t< Builder >
 
using biggroup_tag = element
 
using BaseField = Fq
 

Public Member Functions

 element ()
 
 element (const typename NativeGroup::affine_element &input)
 
 element (const Fq &x, const Fq &y)
 
 element (const element &other)
 
 element (element &&other) noexcept
 
uint32_t set_public () const
 Set the witness indices for the x and y coordinates to public.
 
void validate_on_curve () const
 
void convert_constant_to_fixed_witness (Builder *builder)
 Creates fixed witnesses from a constant element.
 
void fix_witness ()
 
elementoperator= (const element &other)
 
elementoperator= (element &&other) noexcept
 
byte_array< Builderto_byte_array () const
 
element checked_unconditional_add (const element &other) const
 
element checked_unconditional_subtract (const element &other) const
 
element operator+ (const element &other) const
 
element operator- (const element &other) const
 
element operator- () const
 
element operator+= (const element &other)
 
element operator-= (const element &other)
 
std::array< element, 2 > checked_unconditional_add_sub (const element &) const
 Compute (*this) + other AND (*this) - other as a size-2 array.
 
element operator* (const Fr &other) const
 
element conditional_negate (const bool_ct &predicate) const
 
element normalize () const
 
element scalar_mul (const Fr &scalar, const size_t max_num_bits=0) const
 Implements scalar multiplication that supports short scalars. For multiple scalar multiplication use one of the batch_mul methods to save gates.
 
element reduce () const
 
element dbl () const
 
element montgomery_ladder (const element &other) const
 
element montgomery_ladder (const chain_add_accumulator &accumulator)
 
element multiple_montgomery_ladder (const std::vector< chain_add_accumulator > &to_add) const
 Perform repeated iterations of the montgomery ladder algorithm.
 
element quadruple_and_add (const std::vector< element > &to_add) const
 Compute 4.P + to_add[0] + ... + to_add[to_add.size() - 1].
 
NativeGroup::affine_element get_value () const
 
Builderget_context () const
 
Builderget_context (const element &other) const
 
bool_ct is_point_at_infinity () const
 
void set_point_at_infinity (const bool_ct &is_infinity)
 
element get_standard_form () const
 Enforce x and y coordinates of a point to be (0,0) in the case of point at infinity.
 
void set_origin_tag (OriginTag tag) const
 
OriginTag get_origin_tag () const
 
void unset_free_witness_tag ()
 Unset the free witness flag for the element's tags.
 
void set_free_witness_tag ()
 Set the free witness flag for the element's tags.
 
template<size_t max_num_bits>
element< C, Fq, Fr, Gwnaf_batch_mul (const std::vector< element > &_points, const std::vector< Fr > &_scalars)
 Multiscalar multiplication that utilizes 4-bit wNAF lookup tables.
 
template<typename , typename >
requires (IsNotMegaBuilder<C>)
element< C, Fq, Fr, Gbn254_endo_batch_mul_with_generator (const std::vector< element > &big_points, const std::vector< Fr > &big_scalars, const std::vector< element > &small_points, const std::vector< Fr > &small_scalars, const Fr &generator_scalar, const size_t max_num_small_bits)
 
template<typename , typename >
requires (IsNotMegaBuilder<C>)
element< C, Fq, Fr, Gbn254_endo_batch_mul (const std::vector< element > &big_points, const std::vector< Fr > &big_scalars, const std::vector< element > &small_points, const std::vector< Fr > &small_scalars, const size_t max_num_small_bits)
 
template<size_t max_num_bits, size_t WNAF_SIZE>
std::vector< field_t< C > > compute_wnaf (const Fr &scalar)
 
template<typename , typename >
element< C, Fq, Fr, Gsecp256k1_ecdsa_mul (const element &pubkey, const Fr &u1, const Fr &u2)
 
template<size_t num_elements>
std::array< twin_rom_table< C >, 5 > create_group_element_rom_tables (const std::array< element, num_elements > &rom_data, std::array< uint256_t, 8 > &limb_max)
 Constructs a ROM table to look up linear combinations of group elements.
 
template<size_t >
element< C, Fq, Fr, Gread_group_element_rom_tables (const std::array< twin_rom_table< C >, 5 > &tables, const field_t< C > &index, const std::array< uint256_t, 8 > &limb_max)
 

Static Public Member Functions

static std::array< fr, PUBLIC_INPUTS_SIZEconstruct_dummy ()
 
static element reconstruct_from_public (const std::span< const Fr, PUBLIC_INPUTS_SIZE > &limbs)
 Reconstruct a biggroup element from limbs of its coordinates (generally stored in the public inputs)
 
static element from_witness (Builder *ctx, const typename NativeGroup::affine_element &input)
 
static element one (Builder *ctx)
 
static element point_at_infinity (Builder *ctx)
 
static chain_add_accumulator chain_add_start (const element &p1, const element &p2)
 
static chain_add_accumulator chain_add (const element &p1, const chain_add_accumulator &accumulator)
 
static element chain_add_end (const chain_add_accumulator &accumulator)
 
static std::pair< std::vector< element >, std::vector< Fr > > mask_points (const std::vector< element > &_points, const std::vector< Fr > &_scalars)
 Given two lists of points that need to be multiplied by scalars, create a new list of length +1 with original points masked, but the same scalar product sum.
 
static std::pair< std::vector< element >, std::vector< Fr > > handle_points_at_infinity (const std::vector< element > &_points, const std::vector< Fr > &_scalars)
 Replace all pairs (∞, scalar) by the pair (one, 0) where one is a fixed generator of the curve.
 
template<size_t max_num_bits = 0>
static element wnaf_batch_mul (const std::vector< element > &points, const std::vector< Fr > &scalars)
 
static element batch_mul (const std::vector< element > &points, const std::vector< Fr > &scalars, const size_t max_num_bits=0, const bool with_edgecases=false)
 Generic batch multiplication that works for all elliptic curve types.
 
template<typename X = NativeGroup, typename = typename std::enable_if_t<std::is_same<X, bb::g1>::value>>
requires (IsNotMegaBuilder<Builder>)
static element bn254_endo_batch_mul (const std::vector< element > &big_points, const std::vector< Fr > &big_scalars, const std::vector< element > &small_points, const std::vector< Fr > &small_scalars, const size_t max_num_small_bits)
 
template<typename X = NativeGroup, typename = typename std::enable_if_t<std::is_same<X, bb::g1>::value>>
requires (IsNotMegaBuilder<Builder>)
static element bn254_endo_batch_mul_with_generator (const std::vector< element > &big_points, const std::vector< Fr > &big_scalars, const std::vector< element > &small_points, const std::vector< Fr > &small_scalars, const Fr &generator_scalar, const size_t max_num_small_bits)
 
template<typename X = NativeGroup, typename = typename std::enable_if_t<std::is_same<X, secp256k1::g1>::value>>
static element secp256k1_ecdsa_mul (const element &pubkey, const Fr &u1, const Fr &u2)
 
static std::vector< bool_ctcompute_naf (const Fr &scalar, const size_t max_num_bits=0)
 
template<size_t max_num_bits = 0, size_t WNAF_SIZE = 4>
static std::vector< field_t< Builder > > compute_wnaf (const Fr &scalar)
 
template<size_t wnaf_size, size_t staggered_lo_offset = 0, size_t staggered_hi_offset = 0>
static secp256k1_wnaf_pair compute_secp256k1_endo_wnaf (const Fr &scalar)
 

Public Attributes

Fq x
 
Fq y
 

Static Public Attributes

static constexpr size_t PUBLIC_INPUTS_SIZE = BIGGROUP_PUBLIC_INPUTS_SIZE
 

Private Types

using twin_lookup_table = lookup_table_plookup< 2 >
 
using triple_lookup_table = lookup_table_plookup< 3 >
 
using quad_lookup_table = lookup_table_plookup< 4 >
 
using batch_lookup_table = batch_lookup_table_plookup
 

Static Private Member Functions

template<size_t num_elements>
static std::array< twin_rom_table< Builder >, 5 > create_group_element_rom_tables (const std::array< element, num_elements > &elements, std::array< uint256_t, 8 > &limb_max)
 
template<size_t num_elements>
static element read_group_element_rom_tables (const std::array< twin_rom_table< Builder >, 5 > &tables, const field_t< Builder > &index, const std::array< uint256_t, 8 > &limb_max)
 
static std::pair< element, elementcompute_offset_generators (const size_t num_rounds)
 
static NativeGroup::affine_element compute_table_offset_generator ()
 Compute an offset generator for use in biggroup tables.
 
static std::pair< four_bit_table_plookup, four_bit_table_plookupcreate_endo_pair_four_bit_table_plookup (const element &input)
 
static std::pair< quad_lookup_table, quad_lookup_tablecreate_endo_pair_quad_lookup_table (const std::array< element, 4 > &inputs)
 
static std::pair< lookup_table_plookup< 5 >, lookup_table_plookup< 5 > > create_endo_pair_five_lookup_table (const std::array< element, 5 > &inputs)
 

Private Attributes

bool_ct _is_infinity
 

Detailed Description

template<class Builder_, class Fq, class Fr, class NativeGroup>
class bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >

Definition at line 24 of file biggroup.hpp.

Member Typedef Documentation

◆ BaseField

template<class Builder_ , class Fq , class Fr , class NativeGroup >
using bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::BaseField = Fq

Definition at line 29 of file biggroup.hpp.

◆ batch_lookup_table

template<class Builder_ , class Fq , class Fr , class NativeGroup >
using bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::batch_lookup_table = batch_lookup_table_plookup
private

Definition at line 1029 of file biggroup.hpp.

◆ biggroup_tag

template<class Builder_ , class Fq , class Fr , class NativeGroup >
using bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::biggroup_tag = element

Definition at line 28 of file biggroup.hpp.

◆ bool_ct

template<class Builder_ , class Fq , class Fr , class NativeGroup >
using bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::bool_ct = stdlib::bool_t<Builder>

Definition at line 27 of file biggroup.hpp.

◆ Builder

template<class Builder_ , class Fq , class Fr , class NativeGroup >
using bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::Builder = Builder_

Definition at line 26 of file biggroup.hpp.

◆ quad_lookup_table

template<class Builder_ , class Fq , class Fr , class NativeGroup >
using bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::quad_lookup_table = lookup_table_plookup<4>
private

Definition at line 554 of file biggroup.hpp.

◆ triple_lookup_table

template<class Builder_ , class Fq , class Fr , class NativeGroup >
using bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::triple_lookup_table = lookup_table_plookup<3>
private

Definition at line 552 of file biggroup.hpp.

◆ twin_lookup_table

template<class Builder_ , class Fq , class Fr , class NativeGroup >
using bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::twin_lookup_table = lookup_table_plookup<2>
private

Definition at line 550 of file biggroup.hpp.

Constructor & Destructor Documentation

◆ element() [1/5]

template<typename C , class Fq , class Fr , class G >
bb::stdlib::element_default::element< C, Fq, Fr, G >::element ( )

Definition at line 19 of file biggroup_impl.hpp.

◆ element() [2/5]

template<class Builder_ , class Fq , class Fr , class NativeGroup >
bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::element ( const typename NativeGroup::affine_element< Builder_, Fq, Fr, NativeGroup > &  input)

◆ element() [3/5]

template<typename C , class Fq , class Fr , class G >
bb::stdlib::element_default::element< C, Fq, Fr, G >::element ( const Fq x,
const Fq y 
)

Definition at line 33 of file biggroup_impl.hpp.

◆ element() [4/5]

template<typename C , class Fq , class Fr , class G >
bb::stdlib::element_default::element< C, Fq, Fr, G >::element ( const element< Builder_, Fq, Fr, NativeGroup > &  other)

Definition at line 40 of file biggroup_impl.hpp.

◆ element() [5/5]

template<typename C , class Fq , class Fr , class G >
bb::stdlib::element_default::element< C, Fq, Fr, G >::element ( element< Builder_, Fq, Fr, NativeGroup > &&  other)
noexcept

Definition at line 47 of file biggroup_impl.hpp.

Member Function Documentation

◆ batch_mul()

template<typename C , class Fq , class Fr , class G >
element< C, Fq, Fr, G > bb::stdlib::element_default::element< C, Fq, Fr, G >::batch_mul ( const std::vector< element< Builder_, Fq, Fr, NativeGroup > > &  _points,
const std::vector< Fr > &  _scalars,
const size_t  max_num_bits = 0,
const bool  with_edgecases = false 
)
static

Generic batch multiplication that works for all elliptic curve types.

Implementation is identical to bn254_endo_batch_mul but WITHOUT the endomorphism transforms OR support for short scalars See bn254_endo_batch_mul for description of algorithm.

Template Parameters
CThe circuit builder type.
FqThe field of definition of the points in _points.
FrThe field of scalars acting on _points.
GThe group whose arithmetic is emulated by element.
Parameters
_points
_scalars
max_num_bitsThe max of the bit lengths of the scalars.
with_edgecasesUse when points are linearly dependent. Randomises them.
Returns
element<C, Fq, Fr, G>

Definition at line 771 of file biggroup_impl.hpp.

◆ bn254_endo_batch_mul() [1/2]

template<class Builder_ , class Fq , class Fr , class NativeGroup >
template<typename X = NativeGroup, typename = typename std::enable_if_t<std::is_same<X, bb::g1>::value>>
requires (IsNotMegaBuilder<Builder>)
static element bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::bn254_endo_batch_mul ( const std::vector< element< Builder_, Fq, Fr, NativeGroup > > &  big_points,
const std::vector< Fr > &  big_scalars,
const std::vector< element< Builder_, Fq, Fr, NativeGroup > > &  small_points,
const std::vector< Fr > &  small_scalars,
const size_t  max_num_small_bits 
)
static

◆ bn254_endo_batch_mul() [2/2]

template<class Builder_ , class Fq , class Fr , class NativeGroup >
template<typename , typename >
requires (IsNotMegaBuilder<C>)
element< C, Fq, Fr, G > bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::bn254_endo_batch_mul ( const std::vector< element< Builder_, Fq, Fr, NativeGroup > > &  big_points,
const std::vector< Fr > &  big_scalars,
const std::vector< element< Builder_, Fq, Fr, NativeGroup > > &  small_points,
const std::vector< Fr > &  small_scalars,
const size_t  max_num_small_bits 
)

A batch multiplication method for the BN254 curve. This method is only available if Fr == field_t<bb::fr>

big_points : group elements we will multiply by full 254-bit scalar multipliers big_scalars : 254-bit scalar multipliers. We want to compute (\sum big_scalars[i] * big_points[i]) small_points : group elements we will multiply by short scalar mutipliers whose max value will be (1 << max_num_small_bits) small_scalars : short scalar mutipliers whose max value will be (1 << max_num_small_bits) max_num_small_bits : MINIMUM value must be 128 bits (we will be splitting big_scalars into two 128-bit scalars, we assume all scalars after this transformation are 128 bits)

Split big scalars into short 128-bit scalars.

For big_scalars we use the BN254 curve endomorphism to split the scalar into two short 128-bit scalars. i.e. for scalar multiplier k we derive 128-bit values k1, k2 where: k = k1 - k2 * \lambda (\lambda is the cube root of unity modulo the group order of the BN254 curve)

This ensures ALL our scalar multipliers can now be treated as 128-bit scalars, which halves the number of iterations of our main "double and add" loop!

Compute batch_lookup_table

batch_lookup_table implements a lookup table for a vector of points.

We subdivide batch_lookup_table into a set of 3-bit lookup tables, (using 2-bit and 1-bit tables if points.size() is not a multiple of 8)

We index the lookup table using a vector of NAF values for each point

e.g. for points P_1, .., P_N and naf values s_1, ..., s_n (where S_i = +1 or -1), the lookup table will compute:

\sum_{i=0}^n (s_i ? -P_i : P_i)

Compute scalar multiplier NAFs

A Non Adjacent Form is a representation of an integer where each 'bit' is either +1 OR -1, i.e. each bit entry is non-zero. This is VERY useful for biggroup operations, as this removes the need to conditionally add points depending on whether the scalar mul bit is +1 or 0 (instead we multiply the y-coordinate by the NAF value, which is cheaper)

The vector naf_entries tracks the naf set for each point, where each naf set is a vector of bools if naf[i][j] = 0 this represents a NAF value of -1 if naf[i][j] = 1 this represents a NAF value of +1

Initialize accumulator point with an offset generator. See compute_offset_generators for detailed explanation

Get the initial entry of our point table. This is the same as point_table.get_accumulator for the most significant NAF entry. HOWEVER, we know the most significant NAF value is +1 because our scalar muls are positive. get_initial_entry handles this special case as it's cheaper than point_table.get_accumulator

Main "double and add" loop

Each loop iteration traverses TWO bits of our scalar multiplier. Algorithm performs following:

  1. Extract NAF value for bit 2*i - 1 for each scalar multiplier and store in nafs vector.
  2. Use nafs vector to derive the point that we need (add_1) to add into our accumulator.
  3. Repeat the above 2 steps but for bit 2 * i (add_2)
  4. Compute accumulator = 4 * accumulator + 2 * add_1 + add_2 using multiple_montgomery_ladder method

The purpose of the above is to minimize the number of required range checks (vs a simple double and add algo).

When computing repeated iterations of the montgomery ladder algorithm, we can neglect computing the y-coordinate of each ladder output. See multiple_montgomery_ladder for more details.

Get chain_add_accumulator.

Recovering a point from our point table requires group additions iff the table is >3 bits. We can chain repeated add operations together without computing the y-coordinate of intermediate addition outputs.

This is represented using the chain_add_accumulator type. See the type declaration for more details

(this is cheaper than regular additions iff point_table.get_accumulator require 2 or more point additions. Cost is the same as point_table.get_accumulator if 1 or 0 point additions are required)

Handle skew factors.

We represent scalar multipliers via Non Adjacent Form values (NAF). In a NAF, each bit value is either -1 or +1. We use this representation to avoid having to conditionally add points (i.e. every bit we iterate over will result in either a point addition or subtraction, instead of conditionally adding a point into an accumulator, we conditionally negate the point's y-coordinate and always add it into the accumulator)

However! The problem here is that we can only represent odd integers with a NAF. For even integers we add +1 to the integer and set that multiplier's skew value to true.

We record a scalar multiplier's skew value at the end of their NAF values (naf_entries[point_index][num_rounds])

If the skew is true, we must subtract the original point from the accumulator.

Definition at line 218 of file biggroup_bn254.hpp.

◆ bn254_endo_batch_mul_with_generator() [1/2]

template<class Builder_ , class Fq , class Fr , class NativeGroup >
template<typename X = NativeGroup, typename = typename std::enable_if_t<std::is_same<X, bb::g1>::value>>
requires (IsNotMegaBuilder<Builder>)
static element bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::bn254_endo_batch_mul_with_generator ( const std::vector< element< Builder_, Fq, Fr, NativeGroup > > &  big_points,
const std::vector< Fr > &  big_scalars,
const std::vector< element< Builder_, Fq, Fr, NativeGroup > > &  small_points,
const std::vector< Fr > &  small_scalars,
const Fr generator_scalar,
const size_t  max_num_small_bits 
)
static

◆ bn254_endo_batch_mul_with_generator() [2/2]

template<class Builder_ , class Fq , class Fr , class NativeGroup >
template<typename , typename >
requires (IsNotMegaBuilder<C>)
element< C, Fq, Fr, G > bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::bn254_endo_batch_mul_with_generator ( const std::vector< element< Builder_, Fq, Fr, NativeGroup > > &  big_points,
const std::vector< Fr > &  big_scalars,
const std::vector< element< Builder_, Fq, Fr, NativeGroup > > &  small_points,
const std::vector< Fr > &  small_scalars,
const Fr generator_scalar,
const size_t  max_num_small_bits 
)

Perform a multi-scalar multiplication over the BN254 curve

The inputs are:

big_scalars/big_points : 254-bit scalar multipliers (hardcoded to be 4 at the moment) small_scalars/small_points : 128-bit scalar multipliers generator_scalar : a 254-bit scalar multiplier over the bn254 generator point

Definition at line 36 of file biggroup_bn254.hpp.

◆ chain_add()

template<typename C , class Fq , class Fr , class G >
element< C, Fq, Fr, G >::chain_add_accumulator bb::stdlib::element_default::element< C, Fq, Fr, G >::chain_add ( const element< Builder_, Fq, Fr, NativeGroup > &  p1,
const chain_add_accumulator accumulator 
)
static

We compute the following terms:

lambda = acc.lambda_prev * (acc.x1_prev - acc.x) - acc.y1_prev - p1.y / acc.x - p1.x x3 = lambda * lambda - acc.x - p1.x

Requires only 2 non-native field reductions

Definition at line 329 of file biggroup_impl.hpp.

◆ chain_add_end()

template<typename C , class Fq , class Fr , class G >
element< C, Fq, Fr, G > bb::stdlib::element_default::element< C, Fq, Fr, G >::chain_add_end ( const chain_add_accumulator acc)
static

End an addition chain. Produces a full output group element with a y-coordinate

Definition at line 373 of file biggroup_impl.hpp.

◆ chain_add_start()

template<typename C , class Fq , class Fr , class G >
element< C, Fq, Fr, G >::chain_add_accumulator bb::stdlib::element_default::element< C, Fq, Fr, G >::chain_add_start ( const element< Builder_, Fq, Fr, NativeGroup > &  p1,
const element< Builder_, Fq, Fr, NativeGroup > &  p2 
)
static

We can chain repeated point additions together, where we only require 2 non-native field multiplications per point addition, instead of 3

Evaluate a chain addition!

When adding a set of points P_1 + ... + P_N, we do not need to compute the y-coordinate of intermediate addition terms.

i.e. we substitute acc.y with acc.y = acc.lambda_prev * (acc.x1_prev - acc.x) - acc.y1_prev

lambda_prev, x1_prev, y1_prev are the lambda, x1, y1 terms from the previous addition operation.

chain_add requires 1 less non-native field reduction than a regular add operation. begin a chain of additions input points p1 p2 output accumulator = x3_prev (output x coordinate), x1_prev, y1_prev (p1), lambda_prev (y2 - y1) / (x2 - x1)

Definition at line 312 of file biggroup_impl.hpp.

◆ checked_unconditional_add()

template<typename C , class Fq , class Fr , class G >
element< C, Fq, Fr, G > bb::stdlib::element_default::element< C, Fq, Fr, G >::checked_unconditional_add ( const element< Builder_, Fq, Fr, NativeGroup > &  other) const

Definition at line 217 of file biggroup_impl.hpp.

◆ checked_unconditional_add_sub()

template<typename C , class Fq , class Fr , class G >
std::array< element< C, Fq, Fr, G >, 2 > bb::stdlib::element_default::element< C, Fq, Fr, G >::checked_unconditional_add_sub ( const element< Builder_, Fq, Fr, NativeGroup > &  other) const

Compute (*this) + other AND (*this) - other as a size-2 array.

We require this operation when computing biggroup lookup tables for multi-scalar-multiplication. This combined method reduces the number of field additions, field subtractions required (as well as 1 less assert_is_not_equal check)

Template Parameters
C
Fq
Fr
G
Parameters
other
Returns
std::array<element<C, Fq, Fr, G>, 2>

Definition at line 254 of file biggroup_impl.hpp.

◆ checked_unconditional_subtract()

template<typename C , class Fq , class Fr , class G >
element< C, Fq, Fr, G > bb::stdlib::element_default::element< C, Fq, Fr, G >::checked_unconditional_subtract ( const element< Builder_, Fq, Fr, NativeGroup > &  other) const

Definition at line 227 of file biggroup_impl.hpp.

◆ compute_naf()

template<typename C , class Fq , class Fr , class G >
std::vector< bool_t< C > > bb::stdlib::element_default::element< C, Fq, Fr, G >::compute_naf ( const Fr scalar,
const size_t  max_num_bits = 0 
)
static

Definition at line 479 of file biggroup_nafs.hpp.

◆ compute_offset_generators()

template<typename C , class Fq , class Fr , class G >
std::pair< element< C, Fq, Fr, G >, element< C, Fq, Fr, G > > bb::stdlib::element_default::element< C, Fq, Fr, G >::compute_offset_generators ( const size_t  num_rounds)
staticprivate

compute_offset_generators! Let's explain what an offset generator is...

We evaluate biggroup group operations using INCOMPLETE addition formulae for short weierstrass curves:

L = y - y / x - x 2 1 2 1

2 x = L - x - x 3 2 1

y = L (x - x ) - y 3 1 3 1

These formuale do not work for the edge case where x2 == x1

Instead of handling the edge case (which is expensive!) we instead FORBID it from happening by requiring x2 != x1 (other.x.assert_is_not_equal(x) will be present in all group operation methods)

This means it is essential we ensure an honest prover will NEVER run into this edge case, or our circuit will lack completeness!

To ensure an honest prover will not fall foul of this edge case when performing a SCALAR MULTIPLICATION, we init the accumulator with an offset_generator point. This point is a generator point that is not equal to the regular generator point for this curve.

When adding points into the accumulator, the probability that an honest prover will find a collision is now ~ 1 in 2^128

We init accumulator = generator and then perform an n-bit scalar mul. The output accumulator will contain a term 2^{n-1} * generator that we need to subtract off.

offset_generators.first = generator (the initial generator point) offset_generators.second = 2^{n-1} * generator (the final generator point we need to subtract off from our accumulator)

Definition at line 742 of file biggroup_impl.hpp.

◆ compute_secp256k1_endo_wnaf()

template<typename C , class Fq , class Fr , class G >
template<size_t wnaf_size, size_t lo_stagger, size_t hi_stagger>
element< C, Fq, Fr, G >::secp256k1_wnaf_pair bb::stdlib::element_default::element< C, Fq, Fr, G >::compute_secp256k1_endo_wnaf ( const Fr scalar)
static

Split a secp256k1 Fr element into two 129 bit scalars klo, khi, where scalar = klo + \lambda * khi mod n where \lambda is the cube root of unity mod n, and n is the secp256k1 Fr modulus

We return the wnaf representation of the two 129-bit scalars

The wnaf representation includes positive_skew and negative_skew components, because for both klo, khi EITHER k < 2^{129} OR -k mod n < 2^{129}. If we have to negate the short scalar, the wnaf skew component flips sign.

Outline of algorithm:

We will use our wnaf elements to index a ROM table. ROM index values act like regular array indices, i.e. start at 0, increase by 1 per index. We need the wnaf format to follow the same structure.

The mapping from wnaf value to lookup table point is as follows (example is 4-bit WNAF):

wnaf witness value wnaf real value point representation
0 -15 -15.[P]
1 -13 -13.[P]
2 -11 -11.[P]
3 -9 -9.[P]
4 -7 -7.[P]
5 -5 -5.[P]
6 -3 -3.[P]
7 -1 -1.[P]
8 1 1.[P]
9 3 3.[P]
10 5 5.[P]
11 7 7.[P]
12 9 9.[P]
13 11 11.[P]
14 13 13.[P]
15 15 15.[P]
-----------------— --------------— -------------------—

The transformation between the wnaf witness value w and the wnaf real value v is, for an s-bit window:

                 s
     v = 2.w - (2 - 1)

To reconstruct the 129-bit scalar multiplier x from wnaf values w (starting with most significant slice):

                                                   m
                                                  ___
                                                 \     /          s      \    s.(m - i - 1)
      x =  positive_skew - negative_skew +        |    | 2.w  - (2  - 1) | . 2
                                                 /___  \    i            /
                                                  i=0

N.B. m = number of rounds = (129 + s - 1) / s

We can split the RHS into positive and negative components that are strictly positive:

                                     m
                                    ___
                                   \     /    \    s.(m - i - 1)
           x_pos = positive_skew +  |    |2.w | . 2
                                   /___  \   i/
                                    i=0

                                     m
                                    ___
                                   \     /  s     \    s.(m - i - 1)
           x_neg = negative_skew +  |    |(2  - 1)| . 2
                                   /___  \        /
                                    i=0

By independently constructing x_pos, x_neg, we ensure we never underflow the native circuit modulus

To reconstruct our wnaf components into a scalar, we perform the following (for each 129-bit slice klo, khi):

 1. Compute the wnaf entries and range constrain each entry to be < 2^s
 2. Construct `x_pos`
 3. Construct `x_neg`
 4. Cast `x_pos, x_neg` into two Fr elements and compute `Fr reconstructed = Fr(x_pos) - Fr(x_neg)`

This ensures that the only negation in performed in the Fr representation, removing the risk of underflow errors

Once klo, khi have been reconstructed as Fr elements, we validate the following:

 1. `scalar == Fr(klo) - Fr(khi) * Fr(\lambda)

Finally, we return the wnaf representations of klo, khi including the skew

The staggered offset describes the number of bits we want to remove from the input scalar before computing our wnaf slices. This is to enable us to make repeated calls to the montgomery ladder algo when computing a multi-scalar multiplication e.g. Consider an example with 2 points (A, B), using a 2-bit WNAF The typical approach would be to perfomr a double-and-add algorithm, adding points into an accumulator ACC:

ACC = ACC.dbl() ACC = ACC.dbl() ACC = ACC.add(A) ACC = ACC.add(B)

However, if the A and B WNAFs are offset by 1 bit each, we can perform the following:

ACC = ACC.dbl() ACC = ACC.add(A) ACC = ACC.dbl() ACC = ACC.add(B)

which we can reduce to:

ACC = ACC.montgomery_ladder(A) ACC = ACC.montgomery_ladder(B)

This is more efficient than the non-staggered approach as we save 1 non-native field multiplication when we replace a DBL, ADD subroutine with a call to the montgomery ladder

Compute WNAF of a single 129-bit scalar

Parameters
kScalar
staggerThe number of bits that are used in "staggering"
is_negativeIf it should be subtracted
is_loTrue if it's the low scalar

Compute the stagger-related part of WNAF and the final skew

Parameters
fragment_u64Stagger-masked lower bits of the skalar
staggerThe number of staggering bits
is_negativeIf the initial scalar is supposed to be subtracted
wnaf_skewThe skew of the stagger-right-shifted part of the skalar

Compute wnaf values, convert them into witness field elements and range constrain them

Definition at line 103 of file biggroup_nafs.hpp.

◆ compute_table_offset_generator()

template<typename C , class Fq , class Fr , class G >
G::affine_element bb::stdlib::element_default::element< C, Fq, Fr, G >::compute_table_offset_generator ( )
staticprivate

Compute an offset generator for use in biggroup tables.

Sometimes the points from which we construct the tables are going to be dependent in such a way that combining them for constructing the table is not possible without handling the edgecases such as the point at infinity and doubling. To avoid handling those we add multiples of this offset generator to the points.

Parameters
num_rounds

Definition at line 25 of file biggroup_edgecase_handling.hpp.

◆ compute_wnaf() [1/2]

template<class Builder_ , class Fq , class Fr , class NativeGroup >
template<size_t max_num_bits = 0, size_t WNAF_SIZE = 4>
static std::vector< field_t< Builder > > bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::compute_wnaf ( const Fr scalar)
static

◆ compute_wnaf() [2/2]

template<class Builder_ , class Fq , class Fr , class NativeGroup >
template<size_t max_num_bits, size_t WNAF_SIZE>
std::vector< field_t< C > > bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::compute_wnaf ( const Fr scalar)

Definition at line 364 of file biggroup_nafs.hpp.

◆ conditional_negate()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
element bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::conditional_negate ( const bool_ct predicate) const
inline

Definition at line 214 of file biggroup.hpp.

◆ construct_dummy()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
static std::array< fr, PUBLIC_INPUTS_SIZE > bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::construct_dummy ( )
inlinestatic

Definition at line 52 of file biggroup.hpp.

◆ convert_constant_to_fixed_witness()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
void bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::convert_constant_to_fixed_witness ( Builder builder)
inline

Creates fixed witnesses from a constant element.

Definition at line 137 of file biggroup.hpp.

◆ create_endo_pair_five_lookup_table()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
static std::pair< lookup_table_plookup< 5 >, lookup_table_plookup< 5 > > bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::create_endo_pair_five_lookup_table ( const std::array< element< Builder_, Fq, Fr, NativeGroup >, 5 > &  inputs)
inlinestaticprivate

Creates a pair of 5-bit lookup tables, the former corresponding to 5 input points, the latter corresponding to the endomorphism equivalent of the 5 input points (e.g. x -> \beta * x, y -> -y)

Definition at line 583 of file biggroup.hpp.

◆ create_endo_pair_four_bit_table_plookup()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
static std::pair< four_bit_table_plookup, four_bit_table_plookup > bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::create_endo_pair_four_bit_table_plookup ( const element< Builder_, Fq, Fr, NativeGroup > &  input)
inlinestaticprivate

Definition at line 457 of file biggroup.hpp.

◆ create_endo_pair_quad_lookup_table()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
static std::pair< quad_lookup_table, quad_lookup_table > bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::create_endo_pair_quad_lookup_table ( const std::array< element< Builder_, Fq, Fr, NativeGroup >, 4 > &  inputs)
inlinestaticprivate

Creates a pair of 4-bit lookup tables, the former corresponding to 4 input points, the latter corresponding to the endomorphism equivalent of the 4 input points (e.g. x -> \beta * x, y -> -y)

Definition at line 560 of file biggroup.hpp.

◆ create_group_element_rom_tables() [1/2]

template<class Builder_ , class Fq , class Fr , class NativeGroup >
template<size_t num_elements>
static std::array< twin_rom_table< Builder >, 5 > bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::create_group_element_rom_tables ( const std::array< element< Builder_, Fq, Fr, NativeGroup >, num_elements > &  elements,
std::array< uint256_t, 8 > &  limb_max 
)
staticprivate

◆ create_group_element_rom_tables() [2/2]

template<class Builder_ , class Fq , class Fr , class NativeGroup >
template<size_t num_elements>
std::array< twin_rom_table< C >, 5 > bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::create_group_element_rom_tables ( const std::array< element< Builder_, Fq, Fr, NativeGroup >, num_elements > &  rom_data,
std::array< uint256_t, 8 > &  limb_max 
)

Constructs a ROM table to look up linear combinations of group elements.

Template Parameters
C
Fq
Fr
G
num_elements
typename
Parameters
rom_datathe ROM table we are writing into
limb_maxthe maximum size of each limb in the ROM table.

When reading a group element out of the ROM table, we must know the maximum value of each coordinate's limbs. We take this value to be the maximum of the maximum values of the input limbs into the table!

Returns
std::array<twin_rom_table<C>, 5>

Definition at line 33 of file biggroup_tables.hpp.

◆ dbl()

template<typename C , class Fq , class Fr , class G >
element< C, Fq, Fr, G > bb::stdlib::element_default::element< C, Fq, Fr, G >::dbl ( ) const

Definition at line 274 of file biggroup_impl.hpp.

◆ fix_witness()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
void bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::fix_witness ( )
inline

Fix a witness. The value of the witness is constrained with a selector

Definition at line 148 of file biggroup.hpp.

◆ from_witness()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
static element bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::from_witness ( Builder ctx,
const typename NativeGroup::affine_element< Builder_, Fq, Fr, NativeGroup > &  input 
)
inlinestatic

Definition at line 95 of file biggroup.hpp.

◆ get_context() [1/2]

template<class Builder_ , class Fq , class Fr , class NativeGroup >
Builder * bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::get_context ( ) const
inline

Definition at line 344 of file biggroup.hpp.

◆ get_context() [2/2]

template<class Builder_ , class Fq , class Fr , class NativeGroup >
Builder * bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::get_context ( const element< Builder_, Fq, Fr, NativeGroup > &  other) const
inline

Definition at line 355 of file biggroup.hpp.

◆ get_origin_tag()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
OriginTag bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::get_origin_tag ( ) const
inline

Definition at line 383 of file biggroup.hpp.

◆ get_standard_form()

template<typename C , class Fq , class Fr , class G >
element< C, Fq, Fr, G > bb::stdlib::element_default::element< C, Fq, Fr, G >::get_standard_form ( ) const

Enforce x and y coordinates of a point to be (0,0) in the case of point at infinity.

We need to have a standard witness in Noir and the point at infinity can have non-zero random coefficients when we get it as output from our optimized algorithms. This function returns a (0,0) point, if it is a point at infinity

Definition at line 147 of file biggroup_impl.hpp.

◆ get_value()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
NativeGroup::affine_element bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::get_value ( ) const
inline

Definition at line 276 of file biggroup.hpp.

◆ handle_points_at_infinity()

template<typename C , class Fq , class Fr , class G >
std::pair< std::vector< element< C, Fq, Fr, G > >, std::vector< Fr > > bb::stdlib::element_default::element< C, Fq, Fr, G >::handle_points_at_infinity ( const std::vector< element< Builder_, Fq, Fr, NativeGroup > > &  _points,
const std::vector< Fr > &  _scalars 
)
static

Replace all pairs (∞, scalar) by the pair (one, 0) where one is a fixed generator of the curve.

This is a step in enabling our our multiscalar multiplication algorithms to hande points at infinity.

Definition at line 81 of file biggroup_edgecase_handling.hpp.

◆ is_point_at_infinity()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
bool_ct bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::is_point_at_infinity ( ) const
inline

Definition at line 372 of file biggroup.hpp.

◆ mask_points()

template<typename C , class Fq , class Fr , class G >
std::pair< std::vector< element< C, Fq, Fr, G > >, std::vector< Fr > > bb::stdlib::element_default::element< C, Fq, Fr, G >::mask_points ( const std::vector< element< Builder_, Fq, Fr, NativeGroup > > &  _points,
const std::vector< Fr > &  _scalars 
)
static

Given two lists of points that need to be multiplied by scalars, create a new list of length +1 with original points masked, but the same scalar product sum.

Add +1G, +2G, +4G etc to the original points and adds a new point 2ⁿ⋅G and scalar x to the lists. By doubling the point every time, we ensure that no +-1 combination of 6 sequential elements run into edgecases, unless the points are deliberately constructed to trigger it.

Definition at line 41 of file biggroup_edgecase_handling.hpp.

◆ montgomery_ladder() [1/2]

template<typename C , class Fq , class Fr , class G >
element< C, Fq, Fr, G > bb::stdlib::element_default::element< C, Fq, Fr, G >::montgomery_ladder ( const chain_add_accumulator to_add)

Implementation of montgomery_ladder using chain_add_accumulator.

If the input to montgomery_ladder is the output of a chain of additions, we can avoid computing the y-coordinate of the input to_add, which saves us a non-native field reduction.

We substitute to_add.y with lambda_prev * (to_add.x1_prev - to_add.x) - to_add.y1_prev

Here, x1_prev, y1_prev, lambda_prev are the values of x1, y1, lambda for the addition operation that PRODUCED to_add

The reason why this saves us gates, is because the montgomery ladder does not multiply to_add.y by any values i.e. to_add.y is only used in addition operations

This allows us to substitute to_add.y with the above relation without requiring additional field reductions

e.g. the term (lambda * (x3 - x1) + to_add.y) remains "quadratic" if we replace to_add.y with the above quadratic relation

Definition at line 462 of file biggroup_impl.hpp.

◆ montgomery_ladder() [2/2]

template<typename C , class Fq , class Fr , class G >
element< C, Fq, Fr, G > bb::stdlib::element_default::element< C, Fq, Fr, G >::montgomery_ladder ( const element< Builder_, Fq, Fr, NativeGroup > &  other) const

Compute one round of a Montgomery ladder: i.e. compute 2 * (*this) + other Compute D = A + B + A, where A = this and B = other

We can skip computing the y-coordinate of C = A + B:

To compute D = A + C, A=(x_1,y_1), we need the gradient of our two coordinates, specifically:

          y_3 - y_1    lambda_1 * (x_1 - x_3) - 2 * y_1                 2 * y_1

lambda_2 = __________ = ________________________________ = -\lambda_1 - _________ x_3 - x_1 x_3 - x_1 x_3 - x_1

We don't need y_3 to compute this. We can then compute D.x and D.y as usual:

D.x = lambda_2 * lambda_2 - (C.x + A.x) D.y = lambda_2 * (A.x - D.x) - A.y

Requires 5 non-native field reductions. Doubling and adding would require 6 Compute D = A + B + A, where A = this and B = other

We can skip computing the y-coordinate of C = A + B:

To compute D = A + C, A=(x_1,y_1), we need the gradient of our two coordinates, specifically:

          y_3 - y_1    lambda_1 * (x_1 - x_3) - 2 * y_1                 2 * y_1

lambda_2 = __________ = ________________________________ = -\lambda_1 - _________ x_3 - x_1 x_3 - x_1 x_3 - x_1

We don't need y_3 to compute this. We can then compute D.x and D.y as usual:

D.x = lambda_2 * lambda_2 - (C.x + A.x) D.y = lambda_2 * (A.x - D.x) - A.y

Definition at line 426 of file biggroup_impl.hpp.

◆ multiple_montgomery_ladder()

template<typename C , class Fq , class Fr , class G >
element< C, Fq, Fr, G > bb::stdlib::element_default::element< C, Fq, Fr, G >::multiple_montgomery_ladder ( const std::vector< chain_add_accumulator > &  add) const

Perform repeated iterations of the montgomery ladder algorithm.

For points P, Q, montgomery ladder computes R = (P + Q) + P i.e. it's "double-and-add" without explicit doublings.

This method can apply repeated iterations of the montgomery ladder. Each iteration reduces the number of field multiplications by 1, at the cost of more additions. (i.e. we don't compute intermediate y-coordinates).

The number of additions scales with the size of the input vector. The optimal input size appears to be 4.

Template Parameters
C
Fq
Fr
G
Parameters
add
Returns
element<C, Fq, Fr, G>

Definition at line 599 of file biggroup_impl.hpp.

◆ normalize()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
element bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::normalize ( ) const
inline

Definition at line 221 of file biggroup.hpp.

◆ one()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
static element bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::one ( Builder ctx)
inlinestatic

Definition at line 158 of file biggroup.hpp.

◆ operator*()

template<typename C , class Fq , class Fr , class G >
element< C, Fq, Fr, G > bb::stdlib::element_default::element< C, Fq, Fr, G >::operator* ( const Fr scalar) const

Implements scalar multiplication operator.

Definition at line 846 of file biggroup_impl.hpp.

◆ operator+()

template<typename C , class Fq , class Fr , class G >
element< C, Fq, Fr, G > bb::stdlib::element_default::element< C, Fq, Fr, G >::operator+ ( const element< Builder_, Fq, Fr, NativeGroup > &  other) const

Definition at line 78 of file biggroup_impl.hpp.

◆ operator+=()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
element bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::operator+= ( const element< Builder_, Fq, Fr, NativeGroup > &  other)
inline

Definition at line 200 of file biggroup.hpp.

◆ operator-() [1/2]

template<class Builder_ , class Fq , class Fr , class NativeGroup >
element bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::operator- ( ) const
inline

Definition at line 194 of file biggroup.hpp.

◆ operator-() [2/2]

template<typename C , class Fq , class Fr , class G >
element< C, Fq, Fr, G > bb::stdlib::element_default::element< C, Fq, Fr, G >::operator- ( const element< Builder_, Fq, Fr, NativeGroup > &  other) const

Definition at line 159 of file biggroup_impl.hpp.

◆ operator-=()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
element bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::operator-= ( const element< Builder_, Fq, Fr, NativeGroup > &  other)
inline

Definition at line 205 of file biggroup.hpp.

◆ operator=() [1/2]

template<typename C , class Fq , class Fr , class G >
element< C, Fq, Fr, G > & bb::stdlib::element_default::element< C, Fq, Fr, G >::operator= ( const element< Builder_, Fq, Fr, NativeGroup > &  other)

Definition at line 54 of file biggroup_impl.hpp.

◆ operator=() [2/2]

template<typename C , class Fq , class Fr , class G >
element< C, Fq, Fr, G > & bb::stdlib::element_default::element< C, Fq, Fr, G >::operator= ( element< Builder_, Fq, Fr, NativeGroup > &&  other)
noexcept

Definition at line 66 of file biggroup_impl.hpp.

◆ point_at_infinity()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
static element bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::point_at_infinity ( Builder ctx)
inlinestatic

Definition at line 167 of file biggroup.hpp.

◆ quadruple_and_add()

template<typename C , class Fq , class Fr , class G >
element< C, Fq, Fr, G > bb::stdlib::element_default::element< C, Fq, Fr, G >::quadruple_and_add ( const std::vector< element< Builder_, Fq, Fr, NativeGroup > > &  to_add) const

Compute 4.P + to_add[0] + ... + to_add[to_add.size() - 1].

Used in wnaf_batch_mul method. Combining operations requires fewer bigfield reductions.

Method computes R[i] = (2P + A[0]) + (2P + A[1]) + A[2] + ... + A[n-1]

Template Parameters
C
Fq
Fr
G
Parameters
to_add
Returns
element<C, Fq, Fr, G>

Definition at line 505 of file biggroup_impl.hpp.

◆ read_group_element_rom_tables() [1/2]

template<class Builder_ , class Fq , class Fr , class NativeGroup >
template<size_t num_elements>
static element bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::read_group_element_rom_tables ( const std::array< twin_rom_table< Builder >, 5 > &  tables,
const field_t< Builder > &  index,
const std::array< uint256_t, 8 > &  limb_max 
)
staticprivate

◆ read_group_element_rom_tables() [2/2]

template<class Builder_ , class Fq , class Fr , class NativeGroup >
template<size_t >
element< C, Fq, Fr, G > bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::read_group_element_rom_tables ( const std::array< twin_rom_table< C >, 5 > &  tables,
const field_t< C > &  index,
const std::array< uint256_t, 8 > &  limb_max 
)

Definition at line 74 of file biggroup_tables.hpp.

◆ reconstruct_from_public()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
static element bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::reconstruct_from_public ( const std::span< const Fr, PUBLIC_INPUTS_SIZE > &  limbs)
inlinestatic

Reconstruct a biggroup element from limbs of its coordinates (generally stored in the public inputs)

Parameters
limbs
Returns
element

Definition at line 86 of file biggroup.hpp.

◆ reduce()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
element bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::reduce ( ) const
inline

Definition at line 230 of file biggroup.hpp.

◆ scalar_mul()

template<typename C , class Fq , class Fr , class G >
element< C, Fq, Fr, G > bb::stdlib::element_default::element< C, Fq, Fr, G >::scalar_mul ( const Fr scalar,
const size_t  max_num_bits = 0 
) const

Implements scalar multiplication that supports short scalars. For multiple scalar multiplication use one of the batch_mul methods to save gates.

Parameters
scalarA field element. If max_num_bits>0, the length of the scalar must not exceed max_num_bits.
max_num_bitsEven integer < 254. Default value 0 corresponds to scalar multiplication by scalars of unspecified length.
Returns
element<C, Fq, Fr, G>

Let's say we have some curve E defined over a field Fq. The order of E is p, which is prime.

Now lets say we are constructing a SNARK circuit over another curve E2, whose order is r.

All of our addition / multiplication / custom gates are going to be evaluating low degree multivariate polynomials modulo r.

E.g. our addition/mul gate (for wires a, b, c and selectors q_m, q_l, q_r, q_o, q_c) is:

q_m * a * b + q_l * a + q_r * b + q_o * c + q_c = 0 mod r

We want to construct a circuit that evaluates scalar multiplications of curve E. Where q > r and p > r.

i.e. we need to perform arithmetic in one prime field, using prime field arithmetic in a completely different prime field.

To do this, we need to emulate a binary (or in our case quaternary) number system in Fr, so that we can use the binary/quaternary basis to emulate arithmetic in Fq. Which is very messy. See bigfield.hpp for the specifics.

Definition at line 861 of file biggroup_impl.hpp.

◆ secp256k1_ecdsa_mul() [1/2]

template<class Builder_ , class Fq , class Fr , class NativeGroup >
template<typename X = NativeGroup, typename = typename std::enable_if_t<std::is_same<X, secp256k1::g1>::value>>
static element bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::secp256k1_ecdsa_mul ( const element< Builder_, Fq, Fr, NativeGroup > &  pubkey,
const Fr u1,
const Fr u2 
)
static

◆ secp256k1_ecdsa_mul() [2/2]

template<class Builder_ , class Fq , class Fr , class NativeGroup >
template<typename , typename >
element< C, Fq, Fr, G > bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::secp256k1_ecdsa_mul ( const element< Builder_, Fq, Fr, NativeGroup > &  pubkey,
const Fr u1,
const Fr u2 
)

Compute `out = u1.[1] + u2.[pubkey]

Split scalar u1 into 129-bit short scalars u1_lo, u1_hi, where u1 = u1_lo * \lambda u1_hi (\lambda is the cube root of unity modulo the secp256k1 group order)

Covert u1_lo and u1_hi into an 8-bit sliding window NAF. Our base point is the G1 generator. We have a precomputed size-256 plookup table of the generator point, multiplied by all possible wNAF values

We also split scalar u2 using the secp256k1 endomorphism. Convert short scalars into 4-bit sliding window NAFs. We will store the lookup table of all possible base-point wNAF states in a ROM table (it's variable-base scalar multiplication in a SNARK with a lookup table! ho ho ho)

The wNAFs u1_lo_wnaf, u1_hi_wnaf, u2_lo_wnaf, u2_hi_wnaf are each offset by 1 bit relative to each other. i.e. we right-shift u2_hi by 1 bit before computing its wNAF we right-shift u1_lo by 2 bits we right-shift u1_hi by 3 bits we do not shift u2_lo

We do this to ensure that we are never adding more than 1 point into our accumulator when performing our double-and-add scalar multiplication. It is more efficient to use the montgomery ladder algorithm, compared against doubling an accumulator and adding points into it.

The bits removed by the right-shifts are stored in the wnaf's respective least_significant_wnaf_fragment member variable

Construct our 4-bit variable-base and 8-bit fixed base lookup tables

main double-and-add loop

Acc = Acc + Acc Acc = Acc + Acc Acc = Acc + u2_hi_wnaf.[endoP2] + Acc Acc = Acc + u2_lo_wnaf.[P2] + Acc Acc = Acc + u1_hi_wnaf.[endoP1] + Acc Acc = Acc + u1_lo_wnaf.[P1] + Acc Acc = Acc + u2_hi_wnaf.[endoP2] + Acc Acc = Acc + u2_lo_wnaf.[P2] + Acc

We add u2 points into the accumulator twice per 'round' as we only have a 4-bit lookup table (vs the 8-bit table for u1)

At the conclusion of this loop, we will need to add a final contribution from u2_hi, u1_lo, u1_hi. This is because we offset our wNAFs to take advantage of the montgomery ladder, but this means we have doubled our accumulator AFTER adding our final wnaf contributions from u2_hi, u1_lo and u1_hi

Add the final contributions from u2_hi, u1_lo, u1_hi

Handle wNAF skew.

scalars represented via the non-adjacent form can only be odd. If our scalars are even, we must either add or subtract the relevant base point into the accumulator

Definition at line 19 of file biggroup_secp256k1.hpp.

◆ set_free_witness_tag()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
void bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::set_free_witness_tag ( )
inline

Set the free witness flag for the element's tags.

Definition at line 401 of file biggroup.hpp.

◆ set_origin_tag()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
void bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::set_origin_tag ( OriginTag  tag) const
inline

Definition at line 376 of file biggroup.hpp.

◆ set_point_at_infinity()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
void bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::set_point_at_infinity ( const bool_ct is_infinity)
inline

Definition at line 373 of file biggroup.hpp.

◆ set_public()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
uint32_t bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::set_public ( ) const
inline

Set the witness indices for the x and y coordinates to public.

Returns
uint32_t Index at which the representation is stored in the public inputs

Definition at line 72 of file biggroup.hpp.

◆ to_byte_array()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
byte_array< Builder > bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::to_byte_array ( ) const
inline

Definition at line 181 of file biggroup.hpp.

◆ unset_free_witness_tag()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
void bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::unset_free_witness_tag ( )
inline

Unset the free witness flag for the element's tags.

Definition at line 391 of file biggroup.hpp.

◆ validate_on_curve()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
void bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::validate_on_curve ( ) const
inline

Definition at line 117 of file biggroup.hpp.

◆ wnaf_batch_mul() [1/2]

template<class Builder_ , class Fq , class Fr , class NativeGroup >
template<size_t max_num_bits>
element< C, Fq, Fr, G > bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::wnaf_batch_mul ( const std::vector< element< Builder_, Fq, Fr, NativeGroup > > &  _points,
const std::vector< Fr > &  _scalars 
)

Multiscalar multiplication that utilizes 4-bit wNAF lookup tables.

This is more efficient than points-as-linear-combinations lookup tables, if the number of points is 3 or fewer.

Definition at line 21 of file biggroup_batch_mul.hpp.

◆ wnaf_batch_mul() [2/2]

template<class Builder_ , class Fq , class Fr , class NativeGroup >
template<size_t max_num_bits = 0>
static element bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::wnaf_batch_mul ( const std::vector< element< Builder_, Fq, Fr, NativeGroup > > &  points,
const std::vector< Fr > &  scalars 
)
static

Member Data Documentation

◆ _is_infinity

template<class Builder_ , class Fq , class Fr , class NativeGroup >
bool_ct bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::_is_infinity
private

Definition at line 412 of file biggroup.hpp.

◆ PUBLIC_INPUTS_SIZE

template<class Builder_ , class Fq , class Fr , class NativeGroup >
constexpr size_t bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::PUBLIC_INPUTS_SIZE = BIGGROUP_PUBLIC_INPUTS_SIZE
staticconstexpr

Definition at line 32 of file biggroup.hpp.

◆ x

template<class Builder_ , class Fq , class Fr , class NativeGroup >
Fq bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::x

Definition at line 408 of file biggroup.hpp.

◆ y

template<class Builder_ , class Fq , class Fr , class NativeGroup >
Fq bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::y

Definition at line 409 of file biggroup.hpp.


The documentation for this class was generated from the following files: